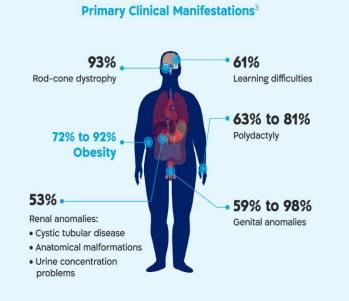
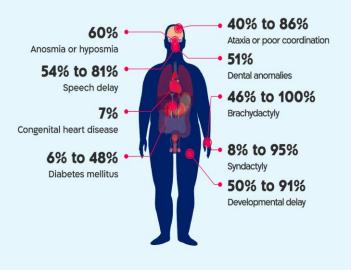
Bardet biedl syndrome

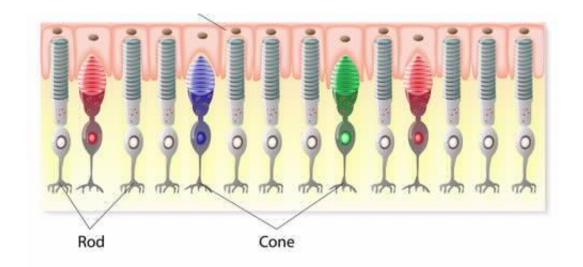

Dr Lior Carmon Pediatric Endocrinology Unit Soroka Medical Center

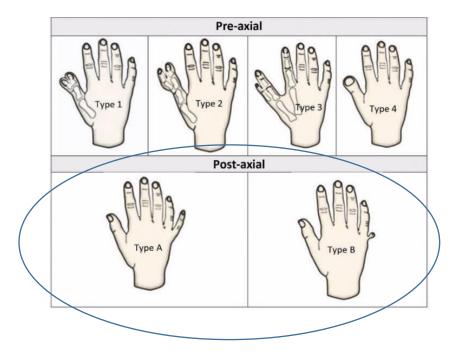
Introduction


- In 1866, Laurence and Moon described a family of four siblings with retinal dystrophy, obesity, and cognitive deficit.
- Bardet and Biedl later reported separately on further similarly affected individuals who in addition had post-axial polydactyly
- The condition was coined Laurence–Moon–Bardet–Biedl syndrome.
- BBS is now the standard term in common usage.

Epidemiology

- The prevalence in North America and Europe, ranges between 1:120,000 and 1:160,000 individuals.
- In some isolated communities, due to increased marriages among consanguineous, it is far higher: 1:13,500 among Bedouins and 1:3700 in Faroe Islands.




Retinal Dystrophy

- Atypical retinitis pigmentosa with early macular involvement.
- Primary loss of rod photoreceptors is followed by later demise of cone photoreceptors.
- The clinical manifestation is gradual onset of night blindness, followed by photophobia and loss of color vision.

polydactyly

- Post-axial polydactyly is common (63-81%) and may be the only obvious dysmorphic feature at birth.
- Polydactyly can be present in all four limbs (21%), only on the hands (8%) or only on the feet (21%).

Obesity

- Incidence is reported to be 72–92% in the BBS population.
- Birth weight is usually within the normal range
- One-third of those with a normal birth weight develop obesity by the age of one year
- Pathogenesis is multifactorial and includes both central and peripheral control of energy expenditure.

Hypogonadism

- Hypogonadism or genitourinary abnormalities are present in 59% of BBS subjects.
- Patients can manifest delayed onset of secondary sexual characteristics
- Males may have cryptorchidism (9%), micropenis and small volume testes
- Female have often irregular menstrual cycle and polycystic ovaries and may have malformed uterus, vaginal atresia and other genital anomalies

Renal

- In a recent French study, renal abnormalities were documented in 82% of the BBS cohort including 33 BBS patients
- Kidney abnormalities in BBS are both anatomical and functional
- Anatomic lesions include fetal lobulation, cystic dysplasia, small kidneys, horseshoe and ectopic/duplex/absent kidneys
- Polyuria/polydypsia linked to a vasopressin-resistant urinary concentration defect is present in approximately one-third of patients.
- Low urinary tract defects, as neurogenic bladder, bladder outflow obstruction or vesicoureteral reflux have been reported in 5–10% of adults.
- Urinary tract infections are frequently reported.

Renal

- Renal tubular acidosis and Fanconi syndrome are rarely associated. Glomerular signs are consistently absent.
- In some cases, the first renal manifestation may be chronic or end-stage renal disease (ESRD)
- According to O'Dea et al., 25% of BBS patients have chronic renal failure by age 48 and 10% develop ESRD in childhood or adolescence
- Renal transplantation has been successfully performed. The major problem in these patients is the exacerbation of severe obesity
- Hypertension may be observed early in life and is present in 30–50% of patients by age 34 and globally in two-thirds of the patients

Other manifestations

- Global developmental delay and cognitive deficit are common in BBS.
- Behavioral anomalies have an incidence of 33%. Autism-related signs were present in 77% of participants
- Cardiac abnormalities (7-50%) include valvular stenoses, patent ductus arteriosis and cardiomyopathies
- GI involvement including liver disease
- Anosmia

Diagnosis

The diagnosis of BBS is based on clinical criteria published by Beales et al. and requires the presence of at least **four primary features or three primary features and two secondary features**

Primary Diagnostic Features	Secondary Diagnostic Features	Described BBS Features Non Included in the Diagnostic Criteria
Retinal Degeneration	Strabismus, cataracts, and astigmatism	Cutaneous Dermatoses
Obesity	Metabolic/endocrine abnormalities (metabolic syndrome, subclinical hypothyroidism, polycystic ovary s.)	Hearing loss
Postaxial polydactyly	Brachydactyly/syndactyly	Asthma
Renal Anomalies	Anosmia/olfactory dysfunction	Dysregulated immune and hematopoietic systems
Learning Disabilities	Neurodevelopmental abnormalities (developmental delay, speech delay, epilepsy, behavioral disturbances, ataxia/poor coordination, mild spasticity)	Musculoskeletal abnormalities
Hypogonadism and Genitourinary Abnormalities	Liver and other gastrointestinal diseases (Hirschsprung disease, inflammatory bowel disease, celiac disease)	
	Cardiovascular and thoraco-abdominal abnormalities	

Genetics

Gene	Name	Chromosomal Coordinate	Localization of the Protein in the Cell	Tissue S pecificity	Protein Function	Gene
BBSI	Bardet-Biedl syndrome I	11q13.2	Cilium and basal body	Low	Component of BBSome complex	BBSI
BBS2	Bardet-Biedl syndrome 2	16q13	Cilium and basal body	Low	Component of BBSome complex	
BBS3/ARL6	Bardet-Biedl syndrome 3/ ADP ribosylation factor like GTPase 6	3q11.2	Cilium, basal body, transition zone and	Low	GTP-binding protein involved in ciliary trafficking ¹⁴⁶	BBSI
BBS4	Raudat Riadi sunduanna d	15-24 1	cytosol Cilium and	Low	Component of PPComp complex	
6634	Bardet-Biedl syndrome 4	15q24.1	basal body	LOW	Component of BBSome complex	BBSI
BBS5	Bardet-Biedl syndrome 5	2q31.1	Basal body	Low	Component of BBSome complex	
BBS6/MKKS	Bardet-Biedl syndrome 6/ MKKS centrosomal shuttling protein	20p I 2.2	Cilium and basal body	Low	Chaperonin like protein assisting BBSome formation	BBS2
BBS7	Bardet-Biedl syndrome 7	4q27	Cilium and basal body	Low	Component of BBSome complex	BBS2 C8orf
BBS8/TTC8	Bardet-Biedl syndrome 8/ tetratricopeptide repeat domain 8	14q31.3	Cilium, IFT and basal body	Low	Component of BBSome complex	BBS2
BBS9	Bardet-Biedl syndrome 9	7p14.3	Cilium	Low	Component of BBSome complex	CEPT
BBS10	Bardet-Biedl syndrome 10	12q21.2	Basal body	Low	Chaperonin like protein assisting BBSome formation	NPHE
BBS11/TRIM32	Bardet- Biedl syndrome	9q33.1	Intermediate filaments	Low	E3 ubiquitin ligase; it promotes degradation of several targets ¹⁴⁷	SCAP
	containing 32					SCAP
BBS12	Bardet-Biedl syndrome 12	4q27	Basal body	Low	Chaperonin like protein assisting BBSome formation	SCLT
BBS13/MKS1	Bardet-Biedl syndrome 13/MKS transition zone complex subunit 1	17q22	Basal body	Low	Component of the tectonic-like complex localized at the transition zone of primary cilium ¹⁴⁸	SCEN
BBS14/CEP290	Bardet-Biedl syndrome I 4/centrosomal protein 290	12q21.32	Basal body and centrosome	Low	Centrosomal protein involved in primary cilium formation ¹⁴⁹	
BBS15/WDPCP	Bardet-Biedl syndrome IS/WD repeat containing planar cell polarity effector	2p15	Cytosol, axoneme and plasma membrane,	Low	Controls ciliogenesis ¹⁵⁰	

Gene	Name	Chromosomal Coordinate	Localization of the Protein in the Cell	Tissue Specificity	Protein Function
BBS16/SDCCAG8	Bardet-Biedl syndrome 16/SHH signaling and ciliogenesis regulator SDCCAG8	lq43-q44	Basal body, transition zone and centriole	Low	Involved in ciliogenesis and Sonic Hedgehog signaling pathway
BBS17/LZTFL1	Bardet-Biedl syndrome 17/leucine zipper transcription factor like 1	3p21.31	Cilium and basal body	Mainly in lymphoid tissue	Regulator of BBSome trafficking and Sonic Hedgehog signalling ¹⁵¹
BBS18/BBIP1	Bardet-Biedl syndrome 18/BBSome interacting protein I	10q25.2	Cytosol	Mainly in testis	Component of BBSome complex
BBS19/IFT27	Bardet-Biedl syndrome I 9/intraflagellar transport 27	22q12.3	Cilium, IFT and basal body	Low	Intraflagellar trafficking (IFT-B) component ¹⁵¹
BBS20/IFT172	Bardet-Biedl syndrome 20/ intraflagellar transport 172	2p23.3	Vesicles	Low	Intraflagellar trafficking (IFT-B) component ¹⁵²
BBS21/ CFAP418/ C8orf37	Bardet-Biedl syndrome 21/ cilia and flagella associated protein 418	8q22.1	Basal body and ciliary root	Low	Unknown ¹⁵³
BBS22/IFT74	Bardet-Biedl syndrome 22/ intraflagellar transport 74	9p21.2	Cilium, IFT and basal body	Low	Intraflagellar trafficking (IFT-B) component ¹⁵²
CEPI9	Centrosomal protein 19	3q29	Centrosome	Low	Recruits the RABL2B GTPase to the ciliary base and intraflagellar transport (IFT) complex B ¹⁵⁴
NPHPI	Nephrocystin I	2q13	Transition zone	Mainly in skeletal muscle	Cell-matrix signaling at focal adhesions ¹⁵⁵
SCAPER	S-phase cyclin A associated protein in the ER	15q24.3	Endoplasmic reticulum and ciliary tip	Low	Ciliary dynamics and disassembly ¹⁵⁶
SCLTI	Sodium channel and clathrin linker I	4 q28.2	Centriole	Low	Component of distal appendages which anchor the cilium to the plasma membrane, involved in ciliogenesis ¹⁵⁷

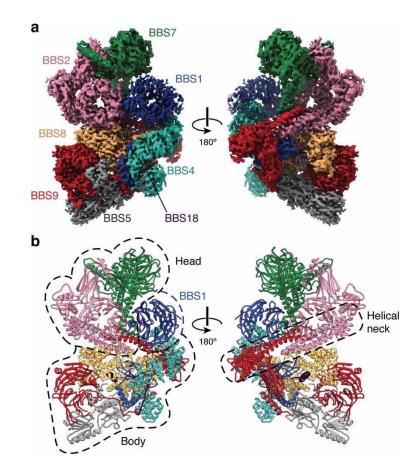
Therapeutics and Clinical Risk Management

Dovepress

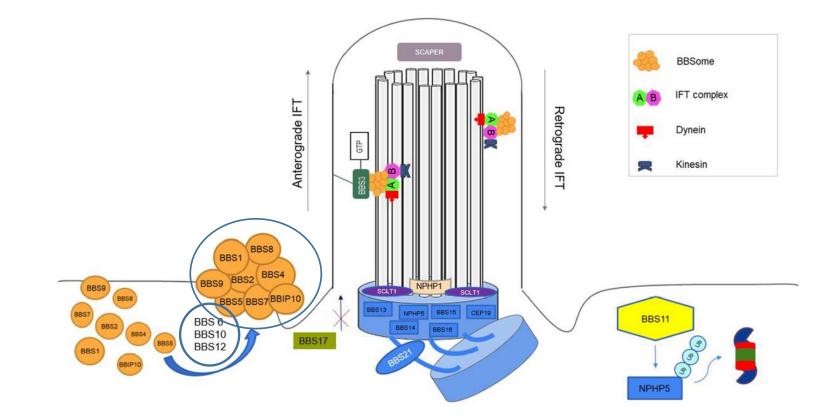
8 Charles And Clinical Outlook

Andrea Melluso^{®1}, Floriana Secondulfo^{®1}, Giovanna Capolongo¹, Giovambattista Capasso^{1,2}, Miriam Zacchia^{®1}

¹Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Napies, Italy, ²Biogem Scart, Ariano Irpino, AV, 83031, Italy Correspondence: Miriam Zacchia, Via Panini 5, Napies, 80131, Italy, Tel +39 081 566 6650, Fax +39 081 566 66571, Email miriamzacchia@unicampania.it

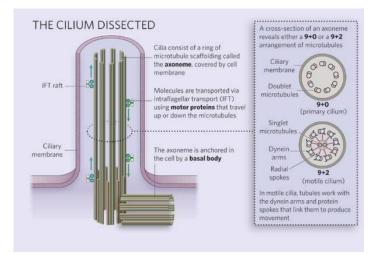

Genetics

- Inheritance is traditionally considered autosomal recessive
- About 50% of diagnosis in the western countries are due to mutations in three genes: *BBS1, BBS2* and *BBS10*.
- BBS1, BBS3, and BBS4 mutations are commonly reported in Saudi Arabia


אצלנו

ה	וטצי
3BS4 c.77-1421 221-1229del578	4
3BS4 c.77-1421 221-1229del578	
3BS4 c.77-1421_221-1229del578	4
3BS4	
3BS4 c.884G>C	
3BS3 -ARL6 c.3757G>A	
3BS3 -ARL6 c.3757G>A	
3BS10 c.310_311del Glu104Lysfs	;*7
3BS4 c.884G>C	
3BS2 V56G	
3BS4 c.884G>C p.Arg295Pro	
3BS3 -ARL6 c.3757G>A	
3BS2 V75G	
3BS4 c.424G>A/N	
3BS4 c.424G>A/N	
3BS4 c.424G>A/N	

Bbsome complex


Bbsome complex

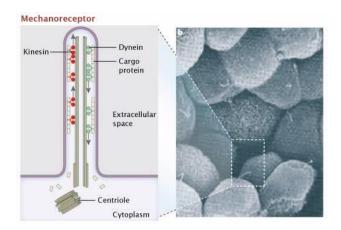
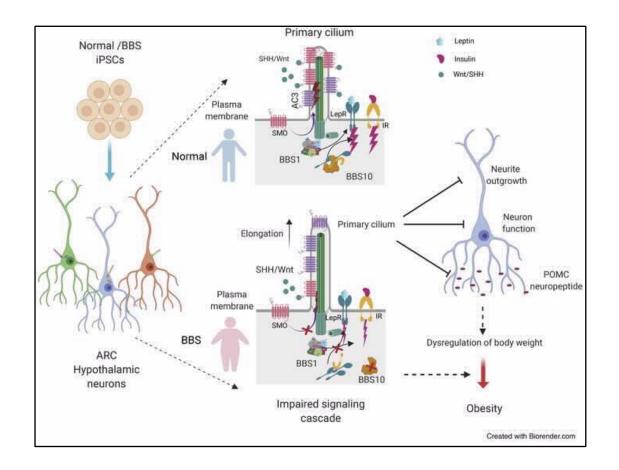


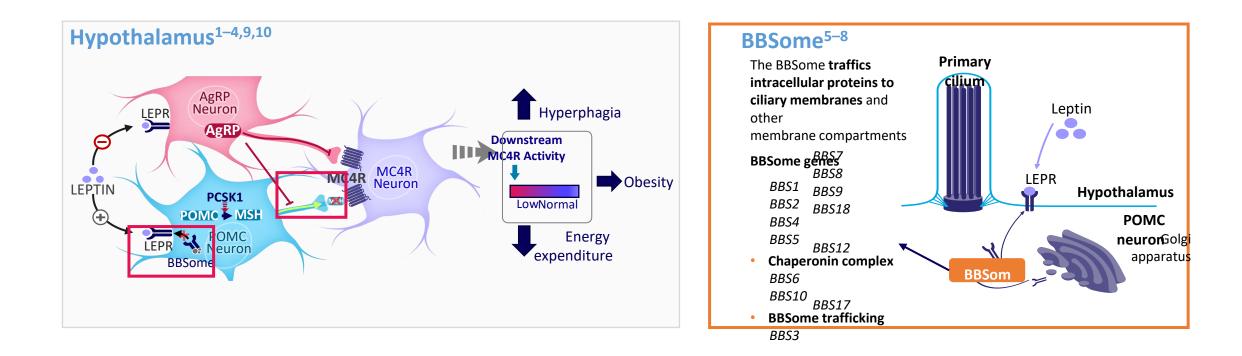
Figure I Diagram of Bardet Biedl syndrome (BBS) proteins and their relationship with the primary cilium. The BBSome complex, constituted by BBS1, BBS2, BBS4, BBS5, BBS7, BBS8, BBS9 and BBIP1 (represented on the left), is assembled with the assistance of chaperonin-like proteins (BBS6, BBS10 and BBS12). The link between BBSome and BBS3 GTPase protein allows the intraflagellar transport. On the other hand, the link to BBS17 keeps the BBSome at basal body level. IFT-A complex mediates retrograde trafficking from the tip of cilia to the base, powered by dynein. IFT-B complex (which includes BBS19 and BBS20, not shown in figure) mediates anterograde trafficking, powered by kinesin. BBS11, as shown on the right, favors protein ubiquitination.

Primary cilia

- The PC is a dynamic organelle acting as an antenna sensing external stimuli
- Its structure consists of a microtubule-based axoneme
- The PC contains at least 600 different proteins
- There is no evidence of protein synthesis within cilia, thus ciliary proteins depend on transport
- Abnormal transport impairs cilia function ciliopathy

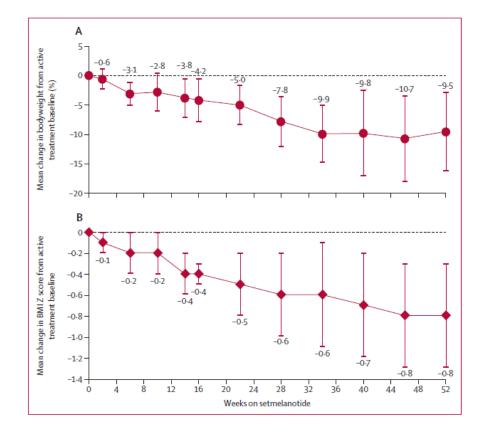


Ciliopathies


Condition +	OMIM +	Gene(s) ÷	Systems/organs affected +
Alström syndrome ^{[8][1]}	203800 🗗	ALMS1	
Asphyxiating thoracic dysplasia (Jeune syndrome) ^{[8][23]}	208500 ⊉		
Bardet-Biedl syndrome ^{[8][7][10]}	209900 ⊉	BBS1, BBS2, ARL6, BBS4, BBS5, MKKS, BBS7, TTC8, BBS9, BBS10, TRIM32, BBS12	
Ellis-van Creveld syndrome ^[23]	225500ピ	EVC, EVC2	
Joubert syndrome ^{[8][10]}	213300⊉	INPP5E, TMEM216, AHI1, NPHP1, CEP290, TMEM67, RPGRIP1L, ARL13B, CC2D2A, BRCC3	Brain
Leber congenital amaurosis ^[23]	204000 🛃	GUCY2D, RPE65	
McKusick–Kaufman syndrome ^[23]	236700	MKKS	
Meckel–Gruber syndrome ^{[8][10][24]}	249000 ⊡	MKS1, TMEM67, TMEM216, CEP290, RPGRIP1L, CC2D2A	Liver, heart, bone
Nephronophthisis ^{[8][7][10]}	256100 🗗	NPHP1, INVS, NPHP3, NPHP4, IQCB1, CEP290, GLIS2, RPGRIP1L	Kidney
Orofaciodigital syndrome 1 ^{[1][7]}	311200 🗗	OFD1	
Polycystic kidney disease ^{[8][7]} (ADPKD and ARPKD) ^[25]	173900 🗗	PKD1, PKD2, PKHD1	Kidney
Primary ciliary dyskinesia (Kartagener syndrome) ^[8]	244400	DNAI1, DNAH5, TXNDC3, DNAH11, DNAI2, KTU, RSPH4A, RSPH9, LRRC50	
Senior–Løken syndrome ^[7]	266900 ⊉	NPHP1, NPHP4, IQCB1, CEP290, SDCCAG8	Eye
Sensenbrenner syndrome (cranioectodermal dysplasia) ^[23]	218330	IFT122	
Short rib-polydactyly syndrome ^[23]	613091 🛃	DYNC2H1	
?	?	IFT88	Novel form of congenital anosmia, reported in 2012 ^[26]

Suggested mechanisms for obesity in BBS

- Abnormal trafficking of proteins to the PC and to the plasma membrane.
- Insulin resistance
- leptin resistance
- Central and peripheral



Setmelanotide – MC4R agonist

Efficacy and safety of setmelanotide, a melanocortin-4 receptor agonist, in patients with Bardet-Biedl syndrome and Alström syndrome: a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial with an open-label period

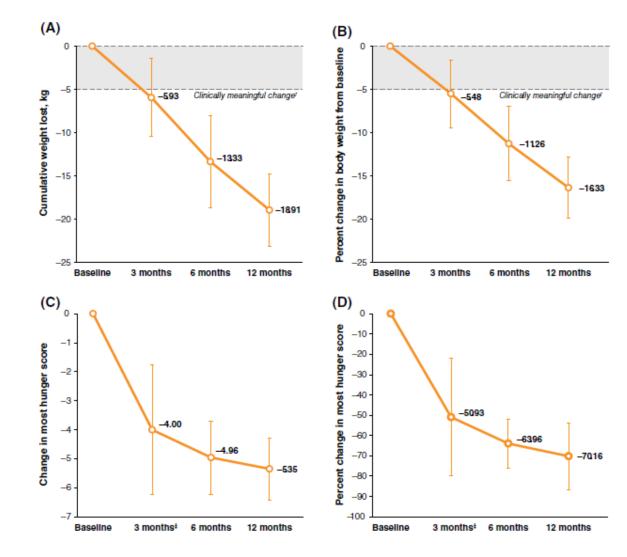
Andrea M Haqq, Wendy K Chung, Hélène Dollfus, Robert M Haws, Gabriel Á Martos-Moreno, Christine Poitou, Jack A Yanovski, Robert S Mittleman, Guojun Yuan, Elizabeth Forsythe, Karine Clément, Jesús Argente

	Active treatment baseline	Week 52	Change from active treatment baseline	Percentage change from active treatment baseline
12 years or older (n=28)				
Bodyweight, kg	115-9 (26-7)	108-5 (27-0)	-7·4 (8·2); p<0·0001	-6·5 (7·0); p<0·0001
Maximal hunger score*	7.0 (1.9)	4.9 (2.5)	-2·1 (2·0); p=0·0010	-30.5 (26.5); p=0.0004
Reached ≥25% reduction		57·1% (28·9 to 82·3); p<0·0001		
≥1 point reduction		10 (71%)		
≥2 point reduction		6 (43%)		
All ages (≥6 years; n=31)				
Waist circumference, cm†	117-9 (18-0)	110-3 (21-0)	-7.2 (7.4)	-6.3 (7.4)
Body fat, kg‡	51.1 (18.9)	43.1 (16.3)	-5.6 (12.0)	-11.3 (26.3)
Lean muscle, kg‡	58-9 (14-1)	57.6 (12.4)	-1.2 (3.9)	-2.0 (6.5)
Lipids, mmol/L§				
Total cholesterol	4-4 (1-0)	3.9 (0.9)	-0.3 (0.4)	-6.1 (10.6)
HDL cholesterol	1.1 (0.2)	1.1 (0.2)	0.1 (0.1)	5.3 (11.6)
LDL cholesterol	3.0 (1.0)	2.6 (0.9)	-0.2 (0.4)	-7.8 (16.8)
Triglycerides	1.9 (0.9)	1.4 (0.8)	-0.2 (0.6)	-9.6 (32.5)
18 years or older (n=15)				
Bodyweight, <mark>k</mark> g	128-4 (16-6)	119.0 (20.6)	-9·4 (9·4); p=0·0008	-7·6 (-7·1); p=0·0005
BMI, kg/m²¶	46-4 (5-9)	43-3 (7-2)	-4.2 (3.3)	-9.1 (6.8)
Younger than 18 years (n=16)				
BMI, kg/m²	37.4 (9.4)	34-2 (10-1)	-3.4 (2.1)	-9.5 (6.4)
BMI Z score	3.7 (1.3)	3.0 (1.5)	-0.8 (0.5)	
≥0.2 point reduction		12 (86%)		
≥0·3 point reduction		14 (71%)		
95th BMI percentile	144.5 (35.8)	126-8 (37-1)	-17-3 (7-7)	

Data are the mean (SD) or mean (95% CI), unless stated otherwise. *Patients \geq 12 years old without cognitive impairment and with hunger scores at active treatment baseline and Week 52 (n-14). †Patients with measurements at active treatment baseline (n-29), week 52 (n-18), and both (n-17). \$Patients with measurements at active treatment baseline (n-31) and week 52 (n-23). ¶Patients with measurements at active treatment baseline (n-15) and week 52 (n-23). ¶Patients with measurements at active treatment baseline (n-15) and week 52 (n-14).

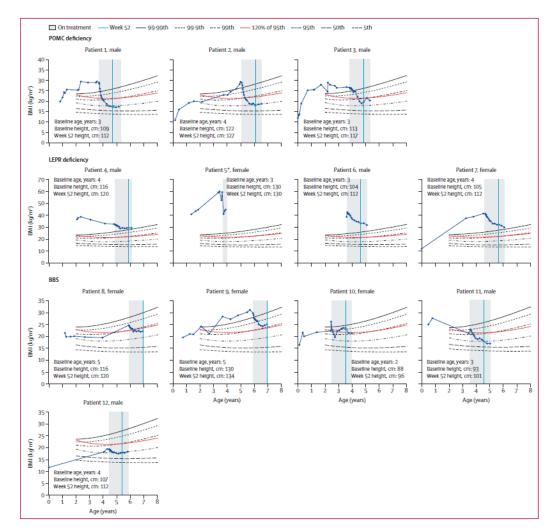
Table 3: Changes in anthropometric and metabolic parameters after setmelanotide treatment in pivotal patients with Bardet-Biedl syndrome (n=32)

ORIGINAL ARTICLE


WILEY

Effect of setmelanotide, a melanocortin-4 receptor agonist, on obesity in Bardet-Biedl syndrome

 Robert Haws MD¹
 |
 Sheila Brady MSN²
 |
 Elisabeth Davis BA²
 |


 Kristina Fletty BS¹
 |
 Guojun Yuan PhD³
 |
 Gregory Gordon MD³
 |

 Murray Stewart MD³
 |
 Jack Yanovski MD²
 |

Setmelanotide in patients aged 2–5 years with rare MC4R pathway-associated obesity (VENTURE): a 1 year, open-label, multicenter, phase 3 trial

Jesús Argente, Charles F Verge, Uzoma Okorie, Ilene Fennoy, Megan M Kelsey, Casey Cokkinias, Cecilia Scimia, Hak-Myung Lee, I Sadaf Farooqi

	POMC or LEPR deficiency (n=7)	BBS (n=5)	Overall (N=12)
ercentage reaching a 0.2-point	decrease or more in BA	AIZ score† from baselin	e to week 52
Patients, n/N (%)	6/7 (86%)	4/5 (80%)	10/12 (83%)
95% CI	48-7-97-4	37-6-96-4	58-7-99-8
MI change from baseline at wee	k 52		
Baseline			
Patients, n/N	7/7	5/5	12/12
BMI, mean (SD), kg/m ²	34-3 (7-1)	23-7 (3-5)	29.9 (7.9)
Week 52			
Patients, n/N	6/7	5/5	11/12
Absolute change in BMI, kg/m²	-8-2 (3-2)	-2.4 (2.2)	-5.6 (4.1)
Percentage change in BMI	-26% (11)	-10% (9)	-18% (13)
Weight-related outcomes change	e from baseline at wee	k 52	
Patients, n/N	6/7	5/5	11/12
WHO BMI Z score	-5.2 (1.9)	-1-3 (1-2)	-3.4 (2.5)
CDC BM1Z score‡	-2.2 (1.3)	-0.8 (0.8)	-1.6 (1.3)
6BMI ₉₅	-47.6 (17.3)	-14-5 (13-9)	-32-5 (22-9)
Waist circumference, cm	-12-4 (7-8)	-2.0 (5.9)	-7.7 (8.6)
Weight, kg	-7.1 (5.1)	-0.3 (3.0)	-4.0 (5.4)
Height, cm	5-1 (2-2)	6.0 (2.0)	5.5 (2.1)
Hunger response§change from b	aseline at week 52		
Patients' caregiver responses, n/N	6/7	5/5	11/12
Much less hungry	5/6 (83%)	2/5 (40%)	7/11 (64%)
iomewhat less hungry	1/6 (17%)	2/5 (40%)	3/11 (27%)
No change	0	0	0
Somewhat more hungry	0	0	0
Much more hungry	0	1/5 (20%)	1/11 (9%)
Caregiver burden change from ba	seline at week 52		
1/N	6/7	5/5	11/12
ZBI global score	-13.2 (10.9)	-13-2 (9-6)	-13-2 (9-8)

Data are n (%) or mean (SD) unless otherwise specified. %BMI_N²⁷ percent of the 95th BMI percentile. BBS=Bardet-Biedl syndrome. CDC=US Centers for Disease Control. LEPR=leptin receptor. POMC=proopiomelanocortin. ZBI=Zarit Burden Interview. *Safety population defined as patients who received one dose or more of setmelanotide. †Per WHO methodology. ‡Post hoc analysis. §In response to the question, *How hungry has your child acted in the past 7 days compared to before starting this study?".

Table 2: Primary, secondary, and exploratory efficacy outcomes (safety population*)

