

 $O \cap O \cap O \cap O$

פרופ׳ יעל לוי–שרגא היחידה לאנדוקרינולוגיה ילדים בית החולים לילדים ספרא, תל השומר

S שיבא

CASE DESCRIPTION

- ET was born at term by normal vaginal delivery, BW 3 kg
- Routine follow up of the pregnancy normal except for findings of asymmetrical cerebral ventricles which were not enlarged
- Head ultrasound post partum was normal except asymmetry of ventricles
- Exclusive breast feeding for the first 6 months after which slow introduction of solid foods was initiated
- Vitamin D 2 drops (400 IU) administered once daily

- Growth was appropriate at 5 months he weighed 6.2 kg
- Growth has since then faltered and at 7 months weighs 6.3 kg
- •At 5 months:
 - makes eye contact and recognizes family members
 - lifts his head but does not roll
 - grasps objects and draws them to his mouth
- A deterioration was noted: hypotonia, head lag, weakness, sleepiness
- One week prior to admission his mother noted erratic eye movements and later an upward gaze
- A repeated head ultrasound was without change.

AT ADMISSION

- AT 7 months, he presented to the ER owing to worsening hypotonia and general weakness
- On examination he was noted to be apathic, pale and with marked developmental delay
- Initial laboratory workup showed hypercalcemia of 20 mg/dl with ionic calcium level of 2.9 mmol/l, a phosphate level of 3.4 mg/dl
- ECG showed sinus rhythm, PR interval 0.3 seconds

FAMILY HISTORY

- Mother: 43 years old of Iraqui-Ashkenazi Origin
- Father: 47 years old of Libyan-Polish origin.
- 3 brothers, otherwise healthy.
- There is no family history of renal stones or hypercalcemia

TREATMENT

- IV fluid
- IV furosemide
- PO and prednisone
- SC calcitonin (3u/kg/dose q12)
- IV pamidronate (1 mg/kg)
- >A decreased in hypercalcemia from 20 mg/dl to 12.6 mg/dl over 36 hours

WORK UP

- Urine Ca/Crea 3350 mg/gr
- PTH: <3 pg/ml</p>
- 25-OH VIT D: normal 52.9 ng/ml,
- 1,25 OH vitamin D: 92 pg/ml (20-100)

e- p Arg331Val*2

- Genetics for 24OH vitamin D CYP24A1 mutation:
 - Axon 2: delE143 father
 - Axon 8: c.995_1001delCAAACAG (stop codon truncation of the protein) mother
 - > His 3 brothers heterozygote of one of the above mutations.

WORK UP

1) EEG in the PICU- normal

2) <u>Head US</u> prior to hospitalization - normal except asymmetry of the ventricles

3) <u>head CT:</u> ventricles mildly dilated including the third ventricle. 4th ventricle is in place.

No pathological enhancement, no evidence of space occupying lesion. normal venous sinuses. No evidence of a fresh bleeding or infarction.

4) <u>MRI:</u> increased signal in the tegmental tract bilaterally

5) normal eye examination

6) <u>BERRA</u>normal

7) <u>LP</u>: normal

8) <u>Renal US</u>: without calcinosis or structural abnormalities

9) <u>WES</u> – no other pathogenic variant besides the known mutation

FOLLOW UP

- Low calcium diet, avoid sun exposure, avoid vitamin D supplementation
- Due to hypotonia and developmental delay, he was treated with physiotherapy and occupational therapy
- Splints have been fitted for walking
- Now he is 11 years old
- Calcium level during years of F/W 9.5-10.7 mg/dl, phosphor 4.8-5.2, ca/crea urine 0.09-0.28, US kidneys normal
- Neurological falling, cognitive impairment, social problems

IIH

 IIH (OMIM#143880) was first described in the 1950s after an epidemic occurrence of unexplained hypercalcemia in infants receiving increased amounts of vitamin D for the prevention of rickets.

Lightwood R et al Lancet 265: 255–256, 1953

IHH

The pathophysiology remained unknown until 2011 identification

of inactivating mutations in CYP24A1.

Schlingmann KP et al. N Engl J Med 365: 410-421, 2011.

Mutations in *CYP24A1* and Idiopathic Infantile Hypercalcemia KarlP. Schlingmann et al. N Engl J Med 2011;365:410-421

IIH

Meanwhile, bi-allelic CYP24A1
mutations have also been
described in 2 adults who
primarily presented with
nephrolithiasis while remaining
asymptomatic during infancy.

Nesterova G et al Clin J Am Soc Nephrol 8: 649–657, 2013

	Ionized Ca ²⁺	Parathyroid Hormone	Plasma Creatinine	25-OHD ₃ (ng/ml)	1α,25(OH) ₂ D ₃ (pg/ml)	24,25(OH) ₂ D (ng/ml)
	(mmol/L)	(pg/ml)	(mg/dl)			
Patient 1	1.23-1.34	3	0.4	71	79-115	0.64
Patient 2	1.32-1.41	3-10	1.2-1.3	39-59	83-160	0.33
Normal	1.12-1.32	16-87	0.5-1.2	10-80	18-64	$1.2-2.6^{b}$
reference range <mark>a</mark>						
Patients' 24-hour u	rine values					

	Urine pH	Calcium	Calcium/	Phosphate	Fractional	
		Excretion ^a	Creatinine	reatinine Excretion		
			Ratio <mark>a</mark>	(g/24 h)	PO ₄ (%)	
Patient 1	6.5	9.3 mg/kg per day	0.42	0.51	12	
Patient 2	6.0	160–405 mg/d	0.33	0.97	34	

Nesterova G et al Clin J Am Soc Nephrol 8: 649-657, 2013

IIH

- In 2015, Schlingmann et al identified four patients from three consanguineous families with typical IIH without mutations in CYP24A1.
- These patients also presented with renal phosphate wasting.
- The primary renal phosphate wasting caused by defective NaPi-IIa encoded by SLC34A1.
- Reduced expression or function of NPT2a leads to renal phosphate loss, hypophosphatemia, and reduced FGF23.

Schlingmann et al Journal of the American Society of Nephrology 2015

Meyer MB et al, J Steroid Biochem Mol Biol. 2020

IHH

-In the presence of low FGF23, there is increased *CYP27B1* expression and decreased *CYP24A* expression, which together results in increased $1,25(OH)_2D$ production with hypercalcemia, hypercalciuria, as well as reduced PTH.

Schlingmann et al J Ame Soc Nephrol2015

Meyer MB et al, J Steroid Biochem Mol Biol. 2020

- Clinical and laboratory findings persist despite cessation of vitamin D prophylaxis but rapidly respond to phosphate supplementation.
- Therefore, early differentiation between SLC34A1(NaPi-IIa) and CYP24A1 (24-hydroxylase) defects appears critical for targeted therapy in patients with IIH.

Schlingmann et al J Amr Soci Neph 2015

Orphanet Journal of Rare Diseases

RESEARCH

Check for updates

Qiao Wang¹, Jia-jia Chen¹, Li-ya Wei¹, Yuan Ding¹, Min Liu¹, Wen-jing Li¹, Chang Su¹ and Chun-xiu Gong^{1*}

- Pt 1 CYP24A1 het
- Pt 2 SLC34A1 het
- Pt 3 SLC34A1 het
- Pt 4 CYP24A1 compound het
- Pt 5 CYP24A1 compound het
- Pt 6 CYP24A1 het+ SLC34A1

het

	Patient 1	Patient 2	Patient 3	Patient 4	Patient 5	Patient 6	
Sex	М	F	М	F	М	М	
Age of onset	3 mo	3 mo	5 days	2 mo	1 mo	1 mo	
Age at diagnosis	9 mo	6 mo	1 mo	11 yr	8 mo	1 yr	
Symptoms Fever					+		
Feeding difficulty	+	+	+	+	+	+	
Vomiting	+	+	+	+	+		
Poor weight	+	+	+	+	+	+	
At initial presen	itation						Normal
1							range
Serum Ca (mmol/L)	3.79	4.19	4.31	2.35	3.36	2.88	2.1-2.8
Serum Pi (mmol/L)	1.52	1.05	1.57	1.72	1.19	1.15	1.37-1.99
Serum Mag (mmol/L)	0.74	0.85	0.86	0.91	0.58	0.81	0.8-1.2
ALP (U/L)	260	124	178	436	154	329	143-406
PTH (pg/ml)	1.00	1.00	0.01	31.58	2	ND	10-69
25(OH)D ₃ (nmol/L)	30.8	25.3	24.4	ND	> 400	77.4	≥50
1,25(OH) ₂ D ₃ (pg/ml)	ND	ND	ND	110	ND	ND	
Urine Ca/Cr (mmol/mmol)	1.67	ND	ND	3.19	1.35	0.24	0.00-0.20
24 h urine Ca (mmol/kg/24 h)	0.22	0.22-0.31	0.17-0.22	ND	0.21	ND	< 0.2
GFR (mL/min/1.73 m2)	84.2-127.0	42.5-94.7	45.9	89.7	66.9-136.3	104.2	< 90

	Patient 1	Patient 2	Patient 3	Patient 4	Patien	ıt 5	Patient 6	•
Sex	М	F	М	F	М		М	
Age of onset	3 mo	3 mo	5 days	2 mo	1 mo		1 mo	
Age at diagnosis	9 mo	6 mo	1 mo	11 yr	8 mo		1 yr	
At last observat	ion							
Age	2 year 6 mo	6 year 8 mo	4 mo	13 year	1 year 5	5 mo	1 year 5 m	0
Serum Ca (mmol/L)	2.2	2.40	2.55	2.45	2.56		2.45	2.1-2.8
Serum Pi (mmol/L)	ND	1.57	1.9	ND	1.87		1.37	1.37-1.99
ALP (U/L)	ND	270	320	ND	ND		44.8	143-406
PTH (pg/ml)	ND	ND	1.2	ND	ND		ND	10-69
Urine Ca/Cr (mmol/mmol)	ND	0.09	0.44	0.16	ND		0.09	0.00-0.20
GFR (mL/min/1.73 m2)	ND	131.7	100.6	77.7	ND		137.1	< 90
Imaging examination								
Nephrocalcinosis	+	+	+	+	+		+	
Gene analysis	<i>CYP24A1</i> c.116G	> SLC34A1	SLC34A1	CYP24	A1	CYP24A1		SLC34A1
	C het	c.1322 A :	- G c.1697_1698in	sT he				c.1726T > C het
		het		c.1349	9T > C	c.823T > C and c.476G >	· C	and CYP24A1
				and c.2	287T>			
6				А				c.376 C > T het

HYPERCALCEMIA DUE TO CYP24A1 MUTATIONS: A SYSTEMATIC DESCRIPTIVE REVIEW

- Of the 221 patients identified, 136 (61.5%) harbored biallelic (either homozygous (n = 56, 41.2%)) or compound heterozygous (n = 77, 56.6%)) variants, and 85 (38.5%) monoallelic variants.
- The results of the current systematic review identified a milder biochemical and clinical phenotype in the monoallelic pathogenic variants carriers.
- Symptomatic hypercalcemia was reported in 20 pregnancies over the 25 identified in the literature (80%), often during the second or third trimester or even post-partum
- The risk of vitamin D supplementation, particularly during early infancy and pregnancy.

Cappellani et al 2022

QEUSTIONS

- **1.** Does the patient's neurological picture result solely from hypercalcemia?
- **2.** Long-term follow-up of patients with biallelic variants:
 - What is the risk of recurrence of significant hypercalcemia in patients with biallelic variants?
 - > How does this affect the recommendation of long-term f/u?
- **3.** Follow-up for carriers of monoallelic variants
- **4.**Recommendations for follow-up during pregnancy:
 - What are the recommendations for managing women with monoallelic or biallelic during pregnancy?

ENDO NEPHRO GENETICS

